November 06, 2025

RECALL:

Addition Reactions

- Occurs on double bonds and triple bonds

$$C = C$$

$$A \xrightarrow{B}$$

$$A \xrightarrow{B}$$

$$A \xrightarrow{B}$$

Hydrogenation Addition of H₂

Hydrogen Halide (HX) Addition

$$C = C \qquad \xrightarrow{H-X} \qquad -C - C - C - Reaction generally leads to syn/cis addition$$

Markovnikov's Rule: In an addition reaction, the positive end of an A–B system (e.g. I–Cl) adds to the least substituted end of the double bond to make the more stable carbocation.

Addition of H₂O and ROH (Hydration and Ether Formation)

HO-H or RO-H
$$Addition R = Alkyl$$

$$C=C \qquad \qquad \begin{array}{c} HO-H(R) \\ H \end{array} \qquad \begin{array}{c} - \\ -C-C \\ H \end{array} \qquad \begin{array}{c} - \\ OH(R) \end{array}$$

$$(e.g. \ H_2SO_4)$$

Not Stereospecific

Hydration formation

- H₂O or ROH by itself cannot add to the double bond. Need an acid (H⁺) to pull the electrons from the double bond.
- H₂SO₄ (H⁺) is a catalyst, meaning that it is not transformed or used up in the reaction but is present to lower the activation energy.
- Follows Markovnikov rules

Example 1:

Addition
$$C = CH_2$$

$$H = OH$$

$$H = OH$$

$$H_2SO_4$$

$$Elimination (E1)$$

$$H = OH$$

Example 2:

November 06, 2025

Example 3:

Example 4:

$$h^{+}$$
 h^{+}
 h^{+

Ether formation

Example 1:

$$H_2SO_4$$
 H^{\oplus}

an ether

 H^{\oplus}
 H^{\oplus}

Example 2:

Example 3 (Limonene):

Hydroboration

- B when stable and uncharged has 3 bonds and no lone pairs
- Borane forms partial bonds with another borane molecule to form B₂H₆ (diborane)
- Borane is a hydride (H⁻) donor

Fast and concerted

$$H_2C=CH_2$$
 $R=B$
 $H=B$
 OR
 $H=B$
 OR
 $R=B$
 $R=B$

Concerted reaction: bond breaking and bond formation happens in a single step **Anti-Markovnikov:** the hydrogen ends up on the more substituted C in a double bond. It is SYN.

Structure of borane

Exists as Diborane (B₂H₆), but behaves like BH₃

Borane BH₃

Example

$$H_2O$$
 H_2SO_4
 H_2SO_4

Anti-Markovinkov

Oxidation and Reduction

 BH_3

Oxidation- removal of electron Reduction- Addition of electron

Example of Reduction (Hydrogenation)

$$H-H \longrightarrow \begin{array}{c} & \begin{array}{c} & \begin{array}{c} Pd \text{ or Ni or Rh or Pt} \\ & \begin{array}{c} \\ \end{array} \end{array} & \begin{array}{c} \\ \\ \end{array} & \begin{array}$$

There are 12 electrons in the reagent side and 14 electrons in the product side. There is an addition of two electrons, therefore classified as **reduction**.

Oxidation Reactions

Ozonolysis (lysis = cleavage) – cleavage by ozone (O_3)

- Use double-headed arrow to indicate resonance (↔)
- Highly reactive (always looking for negative charge such as the negative charge in a double bond)
- Concerted and stereospecific

- Reaction is irreversible

Examples of carbonyl groups

Reaction scheme of ozone

$$c=c$$
 $1. O_3$ $c=0 O=c$

Example

More examples

Epoxidation:

$$C = C \qquad \begin{array}{c} O \\ Epoxide/Oxirane \\ \hline A \ Peracid \\ \hline \end{array} \qquad \begin{array}{c} C - C \\ \hline O \end{array} \qquad \begin{array}{c} Example \ of \\ a \ peracid \\ \hline \end{array} \qquad \begin{array}{c} O \\ C - C \\ \hline \end{array} \qquad \begin{array}{c} O \\ C - C \\ \hline \end{array}$$

Syn/Cis Addition Stereospecific

Concerted (bonds break and form at the same time)

Mechanism:

to quench ethylene oxide:

H. H.
$$H_2O$$
 (in SN_2 fashion)

H. H_2O (in SN_2 fashion)

Example: 1-methyl-1-cyclohexene

Racemic mixture (1:1) cis/syn addition